Please rotate your device to landscape mode for a better experience.
Login

Chicago Wolves
GP: 0 | W: 0 | L: 0 | OTL: 0 | P: 0
GF: 0 | GA: 0 | PP%: 0% | PK%: 0%
GM : Patrik Andersson | Morale : 50 | Team Overall : 56

Team Leaders

Team Stats
Team Info

General ManagerPatrik Andersson
CoachRyan Warsofsky
DivisionMetropolitan
ConferenceEastern Conference
Captain
Assistant #1
Assistant #2


Arena Info

Capacity7,500
Attendance
Season Tickets750


Roster Info

Pro Team16
Farm Team15
Contract Limit31 / 60
Prospects19


Team History

This Season0-0-0 (0PTS)
History172-92-21 (0.604%)
Playoff Appearances3
Playoff Record (W-L)18 - 20 (0.474%)
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON PTCK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Liam Ohgren (R)0X100.00763995667164706625656863414245042620212886,666$
2Valtteri Puustinen0X100.00693895617761736525586258394850047590261775,000$
3Dominik Shine0X100.00695781605850796425635956376254050570321775,000$
4Ville Koivunen (R)0XX100.00625385625650816725646160384343050570221805,833$
5Justin Robidas (R)0X100.00573495615450846575626154384444050550221825,000$
6Massimo Rizzo (R)0X100.00583493535750726175535161344646050520241925,000$
7Cale Fleury0X100.00824399647461686125595371365051050610262890,000$
8Jacob MacDonald0X100.00695785646250826625556375416053047600321800,000$
9Ville Heinola0X100.00653789587164585525545072294549050570241800,000$
10Gustav Lindstrom0X100.00665687566350705625494674335048047550262975,000$
11Leo Loof0X100.00665483556050805125524067314545050520231867,500$
Scratches
1Vasily Ponomarev0X100.006454855956507765755959623745450505602300$
2Conor Timmins0X100.007640856674708762256359793552530476402600$
3Domenick Fensore0X100.005852876051508258255550643545450505302300$
4Ronan Seeley0X100.006036975261508350254743653245450505102200$
TEAM AVERAGE100.0066468960635576613557556536484804957
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name #CON PTSK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Mads Sogaard0100.0057484283575757575758574649050530241775,000$
Scratches
TEAM AVERAGE100.005748428357575757575857464905053
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Ryan Warsofsky8073728058711USA370800,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Cale Fleury (1 Way Contract)Chicago Wolves (CAR)D261998-11-19CANNo93 Kg185 CMNoNoN/AYesNo22025-06-26FalseFalsePro & Farm890,000$890,000$0$0$No890,000$--------890,000$--------No--------Link / NHL Link
Conor Timmins (1 Way Contract)Chicago Wolves (CAR)D261998-09-18CANNo92 Kg188 CMNoNoN/AYesNo0FalseFalsePro & Farm0$0$No---------------------------Link / NHL Link
Domenick FensoreChicago Wolves (CAR)D232001-09-07USANo69 Kg170 CMNoNoProspectNoNo02024-06-05FalseFalsePro & Farm0$0$No---------------------------Link
Dominik ShineChicago Wolves (CAR)RW321993-04-18USANo85 Kg180 CMNoNoAssign ManuallyYesNo12025-06-09FalseFalsePro & Farm775,000$775,000$0$0$No---------------------------Link / NHL Link
Gustav LindstromChicago Wolves (CAR)D261998-10-20SWENo88 Kg188 CMNoNoWaiverNoNo22024-08-23FalseFalsePro & Farm975,000$975,000$0$0$No975,000$--------975,000$--------No--------Link / NHL Link
Jacob MacDonald (1 Way Contract)Chicago Wolves (CAR)D321993-02-26USANo93 Kg183 CMNoNoWaiverYesNo12024-08-23FalseFalsePro & Farm800,000$800,000$0$0$No---------------------------Link / NHL Link
Justin RobidasChicago Wolves (CAR)C222003-03-13USAYes79 Kg173 CMNoNoProspectNoNo12025-06-09FalseFalsePro & Farm825,000$825,000$0$0$No---------------------------Link
Leo LoofChicago Wolves (CAR)D232002-04-25SWENo81 Kg185 CMNoNoProspectNoNo12024-06-05FalseFalsePro & Farm867,500$867,500$0$0$No---------------------------Link
Liam OhgrenChicago Wolves (CAR)LW212004-01-28SWEYes85 Kg183 CMNoNoTrade2025-06-09NoNo22025-06-09FalseFalsePro & Farm886,666$886,666$0$0$No886,666$--------886,666$--------No--------Link
Mads SogaardChicago Wolves (CAR)G242000-12-13DNKNo89 Kg201 CMNoNoN/ANoNo12024-07-15FalseFalsePro & Farm775,000$775,000$0$0$No---------------------------Link / NHL Link
Massimo RizzoChicago Wolves (CAR)C242001-06-13CANYes79 Kg180 CMNoNoProspectNoNo12025-06-09FalseFalsePro & Farm925,000$925,000$0$0$No---------------------------Link
Ronan SeeleyChicago Wolves (CAR)D222002-08-02CANNo87 Kg185 CMNoNoN/ANoNo0FalseFalsePro & Farm0$0$No---------------------------Link / NHL Link
Valtteri Puustinen (1 Way Contract)Chicago Wolves (CAR)RW261999-06-04FINNo83 Kg175 CMNoNoWaiver2025-02-02YesNo12024-06-01FalseFalsePro & Farm775,000$775,000$0$0$No---------------------------Link / NHL Link
Vasily PonomarevChicago Wolves (CAR)C232002-03-13RUSNo82 Kg178 CMNoNoN/ANoNo0FalseFalsePro & Farm0$0$No---------------------------Link / NHL Link
Ville Heinola (1 Way Contract)Chicago Wolves (CAR)D242001-02-03FINNo82 Kg180 CMNoNoN/ANoNo12024-07-16FalseFalsePro & Farm800,000$800,000$0$0$No---------------------------Link / NHL Link
Ville KoivunenChicago Wolves (CAR)LW/RW222003-06-13FINYes73 Kg180 CMNoNoDraftNoNo12025-06-09FalseFalsePro & Farm805,833$805,833$0$0$No---------------------------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1624.7584 Kg183 CM0.94631,250$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
132221
230221
320122
418131
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
231221
3Ville Heinola29230
40122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
180113
220113
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
180113
220113
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160230
240230
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160230
240230
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16023060230
24023040230
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160023
240032
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , Ville Heinola,
Goalie
#1 : Mads Sogaard, #2 :
Custom OT Lines Forwards
, , , , , , , , ,
Custom OT Lines Defensemen
, , , , Ville Heinola


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total00000000000000000000000000000000000.000000000000000000000000%000%0000%000%000%000000

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
00N/A0000000000
All Games
GPWLOTWOTL SOWSOLGFGA
000000000
Home Games
GPWLOTWOTL SOWSOLGFGA
000000000
Visitor Games
GPWLOTWOTL SOWSOLGFGA
000000000
Last 10 Games
WLOTWOTL SOWSOL
000000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
000%000%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
00000000
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
000%000%000%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
000000


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity50002500
Ticket Price3515
Attendance0%0%
Attendance PCT0%0%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
36 0 - 0%0$0$7500100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
0$ 683,500$ 683,500$ 800,000$0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




Chicago Wolves Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Curtis McKenzie2125988147271594012806299.38%60366817.3018314914102299539.92%20.8025
2Brandon Gignac2165387140187223449751910.21%38355616.47143044730441613254.81%00.7926
3Mackenzie MacEachern212446711120572832905288.33%49343216.199223181000611439.48%00.6514
4Christian Wolanin1452066868531261702059.76%169291920.13923328810156250.00%00.5900
5Jack Drury1232757841122702363028.94%9187215.227243110700034249.80%00.9000

Chicago Wolves Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Eetu Makiniemi70491830.9162.4442324617220470110.91712
2Charlie Lindgren74432560.9182.45447410418322250210.83324
3Mads Sogaard72372870.9212.7343486019825031321270.76913
4Beck Warm40221170.9012.38242022969670200.8899
5Max Lagace32211010.9022.65192743858660200.5002

Chicago Wolves Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
202172402102612232183493623100111013591443617110150297925942324146460590786132091694648734271833541121514644757716.21%5067086.17%71342248354.05%1289236954.41%554106951.82%171211301705574933464
20227238190734124618462361611061111249925362280123012285371022464396851690707514232577371481739211262966716533086721.75%2774384.48%21324240155.14%1290238754.04%613113454.06%175511971661544946477
20237236240354022117447362290203011576393614150151010698891221385606149366559230874377577633216261975215973317221.75%2983986.91%31258245751.20%1192245448.57%572111051.53%173811771675552944482
202472292805631206206036151402311103106-3361414033201031003812063455517038798110265279093189846251081443917401334030.08%1685368.45%5755152149.64%818163849.94%534102252.25%151083214766791372678
Total Regular Season28814392017201249057471581447644011562477372105144674806156242837553368905158324889153112932723693763000306832251458617260330736454124725620.53%124920583.59%174679886252.80%4589884851.86%2273433552.43%671743396519235141962103
Playoff
2021514000001217-531200000910-12020000037-42122335004611183565458151634410513631516.13%49883.67%011721654.17%11620556.59%397254.17%12983132447034
20221910900000494541046000002427-3963000002518720498713611132114159820020917712534170170425901415.56%761284.21%033566550.38%31461451.14%15930352.48%470316441149259131
202314770000039363633000001310384400000262601439741131114914246913915215820385106110311751418.67%40880.00%025652648.67%25045455.07%10721450.00%34924031910918896
Total Playoff3818200000010098219811000004647-11910900000545133610018428422313629412503954153934710823203858721963316.84%1652883.03%0708140750.32%680127353.42%30558951.78%949640893304518262

Chicago Wolves Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Vasili Ponomarev33514192143965875.75%559918.162683200012048.33%00.6300
2Seth Jarvis18144186023227319.18%330116.734151900004054.95%01.2000
3Curtis McKenzie339918-4187043929.78%760118.232572000022039.47%00.6000
4Vinnie Hinostroza1451217004264710.64%028020.0637102100011016.67%11.2100
5Mackenzie MacEachern33971602159528210.98%851315.564591200012036.00%00.6200

Chicago Wolves Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Eetu Makiniemi1910630.9172.261170014453300100
2Charlie Lindgren147700.9052.54826213536700100
3Max Lagace41210.9042.89270001313600000
4Beck Warm10100.8524.07590042700000
5Mads Sogaard10001.0000300001700000