Login

Milwaukee Admirals
GP: 72 | W: 43 | L: 18 | OTL: 11 | P: 97
GF: 250 | GA: 197 | PP%: 19.21% | PK%: 82.11%
GM : Emil Gilliusson | Morale : 63 | Team Overall : 59
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
San Jose Barracuda
40-28-4, 84pts
4
FINAL
3 Milwaukee Admirals
43-18-11, 97pts
Team Stats
W1StreakW1
17-18-1Home Record23-8-5
23-10-3Away Record20-10-6
5-5-0Last 10 Games7-2-1
3.04Goals Per Game3.47
2.72Goals Against Per Game2.74
18.28%Power Play Percentage19.21%
79.42%Penalty Kill Percentage82.11%
Charlotte Checkers
44-21-7, 95pts
2
FINAL
3 Milwaukee Admirals
43-18-11, 97pts
Team Stats
L1StreakW1
24-9-3Home Record23-8-5
20-12-4Away Record20-10-6
8-2-0Last 10 Games7-2-1
3.13Goals Per Game3.47
2.49Goals Against Per Game2.74
20.74%Power Play Percentage19.21%
88.60%Penalty Kill Percentage82.11%
Team Leaders
Brian BoyleGoals
Brian Boyle
34
Brian BoyleAssists
Brian Boyle
50
Brian BoylePoints
Brian Boyle
84
Seth GriffithPlus/Minus
Seth Griffith
31
Malcolm SubbanWins
Malcolm Subban
40
Connor IngramSave Percentage
Connor Ingram
0.929

Team Stats
Goals For
250
3.47 GFG
Shots For
2279
31.65 Avg
Power Play Percentage
19.2%
58 GF
Offensive Zone Start
41.4%
Goals Against
197
2.74 GAA
Shots Against
1966
27.31 Avg
Penalty Kill Percentage
82.1%
44 GA
Defensive Zone Start
38.9%
Team Info

General ManagerEmil Gilliusson
CoachRay Bennett
DivisionCentral
ConferenceWestern Conference
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance2,836
Season Tickets300


Roster Info

Pro Team32
Farm Team19
Contract Limit51 / 60
Prospects20


Team History

This Season43-18-11 (97PTS)
History84-43-17 (0.583%)
Playoff Appearances1
Playoff Record (W-L)16-7
Stanley Cup1


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Miles Wood0X100.006443848773635070355777672564650306502713,200,000$
2Brian Boyle0XX100.00797687729158616063627084255252081650382925,000$
3Ryan Dzingel14XX100.00679470787266636458597071256666065640312850,000$
4Patrick Brown0XX100.00885991727763586092605981255456080630301850,000$
5Seth Griffith0X100.00706776616776787050686865654949081630302762,500$
6Philip Tomasino (R)9XXX100.00674295786559787038736662255454081630211894,167$
7Kyle Turris0XXX100.00674294767152556062615668747777079610331750,000$
8Maxim Mamin0XXX100.00805889787762545825647161254747079610281875,000$
9Sheldon Dries0XX100.00714299746456696842597165255050081610282750,000$
10Adam Cracknell33XX100.00817790587765666580616568624444067610371750,000$
11Taro Hirose55XX100.00674191695957807244655865255050077600262850,000$
12Ridly Greig (R)0XX100.00834094706863806265645258254444050590203863,333$
13Dylan Samberg0X100.00794590708165655825674778254545081640241925,000$
14Will Butcher8X100.00614199846870596425524865256464081630282875,000$
15Cale Fleury0X100.00864699747765706025394775254848020620241750,000$
16William Lagesson0X100.00776488727760606125514770255050081610273825,000$
17Jacob Larsson0X100.00747279777272795025424065386363081610252950,000$
18Jordan Gross0X100.00716879666862626325615162484444081590272850,000$
Scratches
1Ryan Reaves0X100.00997882738457795544615862257680079620361750,000$
2Kiefer Sherwood0XX100.00764399726752736325595966255556051590272850,000$
3Brayden Burke0XXX100.00686085626058586075625460514444046560263875,000$
4Kyle Topping (R)0X100.00706972616950505366564659444444020530233750,000$
5Kurtis Gabriel0X100.00667740637758614650414656444747020510291800,000$
6Vincent Marleau (R)0XX100.00777289647245454759444561434444050510233750,000$
7Tye Felhaber0XXX100.00756795636748494759385060484444047510242750,000$
8Ethan Prow0X100.00756696656662635825544863464444053580302900,000$
9Jimmy Schuldt0X100.00747474617463674825394160394444020550271750,000$
10Filip Berglund0X100.00787779637749514525353961374444020540252750,000$
11Jesper Sellgren0X100.00736590636555575025444160394444020540242800,000$
12Marc Del Gaizo (R)0X100.00726587636556584825394259404444020530232850,833$
TEAM AVERAGE100.0075618670726063594455546536515205759
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Malcolm Subban100.0046486081459145509081455555041630291850,000$
2Connor Ingram100.0056425377626154606361304444081570251733,333$
Scratches
TEAM AVERAGE100.005145577954765055777138505006160
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Ray Bennett64777966898357CAN6011,200,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Brian BoyleMilwaukee Admirals (NAS)C/LW723450842749151011963027721111.26%22153521.331011216224811272098521.33110600021.0937111856
2Ryan DzingelMilwaukee Admirals (NAS)LW/RW7029376612180761762838521310.25%20145820.83610167324101171888420.8311000000.9105000753
3Seth GriffithMilwaukee Admirals (NAS)RW723231633120082872005712916.00%7133618.568101842261000006418.5612800000.9417000654
4Patrick BrownMilwaukee Admirals (NAS)C/RW70193756305001291971583812212.03%13119917.14347159600001033217.14139900000.9302000467
5Adam CracknellMilwaukee Admirals (NAS)C/RW701640561142093164176511269.09%23142120.3168144820610132022320.31180900000.7912000082
6Philip TomasinoMilwaukee Admirals (NAS)C/LW/RW72252752260321161905615013.16%5117416.326131935231000006416.3290500010.8901000513
7Dylan SambergMilwaukee Admirals (NAS)D7210394995801769810433639.62%86169623.5641014572480001176100.00%000100.5800000035
8William LagessonMilwaukee Admirals (NAS)D726424817440134739434496.38%87149820.8141519502250221179000.00%000000.6400000231
9Will ButcherMilwaukee Admirals (NAS)D7210354511100405788406511.36%72155621.61691547254000055320.00%000000.5800000002
10Maxim MaminMilwaukee Admirals (NAS)C/LW/RW711622386200135821585111510.13%2118216.65426342400000231016.659000000.6401000133
11Kyle TurrisMilwaukee Admirals (NAS)C/LW/RW71111829560259596428011.46%794213.274481812011261801113.2755300100.6211000122
12Sheldon DriesMilwaukee Admirals (NAS)C/LW72111627216058126127411078.66%480811.23112841000010011.2387300000.6700000010
13Jacob LarssonMilwaukee Admirals (NAS)D72224265520135264415304.55%83149820.8101212202430111192000.00%000000.3500000100
14Jordan GrossMilwaukee Admirals (NAS)D7261521274551134031112319.35%56123117.10000281012139000.00%000000.3400001112
15Taro HiroseMilwaukee Admirals (NAS)LW/RW7091120-180376710430708.65%473910.5600001000000110.564400000.5400000102
16Miles WoodMilwaukee Admirals (NAS)LW20117181100113076266214.47%834917.4811214600001164017.482100001.0300000211
17Kiefer SherwoodMilwaukee Admirals (NAS)LW/RW527815-26028437717629.09%24939.490000200003109.493400000.6100000021
18Ryan ReavesMilwaukee Admirals (NAS)RW6957123580122575620508.93%869010.000000000011261010.006000000.3500000000
19Ethan ProwMilwaukee Admirals (NAS)D5438111228058312251613.64%4686315.99000224000058000.00%000000.2500000010
20Brayden BurkeMilwaukee Admirals (NAS)C/LW/RW4453844011312072225.00%13979.04011115000030109.0420400000.4000000000
21Cale FleuryMilwaukee Admirals (NAS)D18134-1100268158116.67%1632017.81112413011048100.00%000000.2500000000
Team Total or Average132726848074822155020162218002421744177611.07%5722239516.886411217653227874711301937472649.77%733600230.67626112394744
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Malcolm SubbanMilwaukee Admirals (NAS)694015100.9012.6439998417617760210.59122690842
2Connor IngramMilwaukee Admirals (NAS)83210.9292.1031400111550010.00%0270001
Team Total or Average774317110.9032.604313841871931022227170843


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam CracknellMilwaukee Admirals (NAS)C/RW371985-07-15No209 Lbs6 ft3NoNoNo1Pro & Farm750,000$0$0$NoLink / NHL Link
Brayden BurkeMilwaukee Admirals (NAS)C/LW/RW261997-01-01No165 Lbs5 ft10NoNoNo3Pro & Farm875,000$0$0$No875,000$875,000$Link / NHL Link
Brian BoyleMilwaukee Admirals (NAS)C/LW381984-12-18No245 Lbs6 ft4NoNoNo2Pro & Farm925,000$0$0$No925,000$Link / NHL Link
Cale FleuryMilwaukee Admirals (NAS)D241998-11-18No213 Lbs6 ft1NoNoYes1Pro & Farm750,000$0$0$NoLink / NHL Link
Connor IngramMilwaukee Admirals (NAS)G251997-03-30No196 Lbs6 ft2NoNoNo1Pro & Farm733,333$0$0$NoLink / NHL Link
Dylan SambergMilwaukee Admirals (NAS)D241999-01-24No216 Lbs6 ft4NoNoNo1Pro & Farm925,000$0$0$NoLink / NHL Link
Ethan ProwMilwaukee Admirals (NAS)D301992-11-17No182 Lbs5 ft11NoNoNo2Pro & Farm900,000$0$0$No900,000$Link / NHL Link
Filip BerglundMilwaukee Admirals (NAS)D251997-05-10No205 Lbs6 ft3NoNoNo2Pro & Farm750,000$0$0$No750,000$Link / NHL Link
Jacob LarssonMilwaukee Admirals (NAS)D251997-04-29No190 Lbs6 ft2NoNoNo2Pro & Farm950,000$0$0$No950,000$Link / NHL Link
Jesper SellgrenMilwaukee Admirals (NAS)D241998-06-11No183 Lbs5 ft10NoNoNo2Pro & Farm800,000$0$0$No800,000$Link / NHL Link
Jimmy SchuldtMilwaukee Admirals (NAS)D271995-05-11No203 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoLink / NHL Link
Jordan GrossMilwaukee Admirals (NAS)D271995-05-09No190 Lbs5 ft10NoNoNo2Pro & Farm850,000$0$0$No850,000$Link / NHL Link
Kiefer SherwoodMilwaukee Admirals (NAS)LW/RW271995-03-31No180 Lbs6 ft0NoNoNo2Pro & Farm850,000$0$0$No850,000$Link / NHL Link
Kurtis GabrielMilwaukee Admirals (NAS)RW291993-04-20No200 Lbs6 ft4NoNoNo1Pro & Farm800,000$0$0$NoLink / NHL Link
Kyle ToppingMilwaukee Admirals (NAS)C231999-11-18Yes194 Lbs5 ft11NoNoNo3Pro & Farm750,000$0$0$No750,000$750,000$Link / NHL Link
Kyle TurrisMilwaukee Admirals (NAS)C/LW/RW331989-08-14No190 Lbs6 ft1NoNoNo1Pro & Farm750,000$0$0$NoLink / NHL Link
Malcolm SubbanMilwaukee Admirals (NAS)G291993-12-21No215 Lbs6 ft2NoNoYes1Pro & Farm850,000$0$0$NoLink / NHL Link
Marc Del GaizoMilwaukee Admirals (NAS)D231999-10-11Yes181 Lbs5 ft10NoNoNo2Pro & Farm850,833$0$0$No850,833$Link / NHL Link
Maxim MaminMilwaukee Admirals (NAS)C/LW/RW281995-01-13No206 Lbs6 ft2NoNoNo1Pro & Farm875,000$0$0$NoLink / NHL Link
Miles Wood (1 Way Contract)Milwaukee Admirals (NAS)LW271995-09-13 08:59:00No194 Lbs6 ft2NoNoYes1Pro & Farm3,200,000$2,200,000$202,162$NoLink / NHL Link
Patrick BrownMilwaukee Admirals (NAS)C/RW301992-05-29No210 Lbs6 ft1NoNoNo1Pro & Farm850,000$0$0$NoLink / NHL Link
Philip TomasinoMilwaukee Admirals (NAS)C/LW/RW212001-07-28Yes179 Lbs6 ft0NoNoNo1Pro & Farm894,167$0$0$NoLink / NHL Link
Ridly GreigMilwaukee Admirals (NAS)C/LW202002-08-08 11:54:25Yes181 Lbs6 ft0NoNoNo3Pro & Farm863,333$0$0$No863,333$863,333$Link / NHL Link
Ryan DzingelMilwaukee Admirals (NAS)LW/RW311992-03-09No190 Lbs6 ft0NoNoNo2Pro & Farm850,000$0$0$No850,000$Link / NHL Link
Ryan ReavesMilwaukee Admirals (NAS)RW361987-01-20No225 Lbs6 ft2NoNoNo1Pro & Farm750,000$0$0$NoLink / NHL Link
Seth GriffithMilwaukee Admirals (NAS)RW301993-01-04No190 Lbs5 ft9NoNoYes2Pro & Farm762,500$0$0$No762,500$Link / NHL Link
Sheldon DriesMilwaukee Admirals (NAS)C/LW281994-04-23No180 Lbs5 ft9NoNoNo2Pro & Farm750,000$0$0$No750,000$Link / NHL Link
Taro HiroseMilwaukee Admirals (NAS)LW/RW261996-06-30No162 Lbs5 ft10NoNoNo2Pro & Farm850,000$0$0$No850,000$Link / NHL Link
Tye FelhaberMilwaukee Admirals (NAS)C/LW/RW241998-08-05No185 Lbs5 ft11NoNoNo2Pro & Farm750,000$0$0$No750,000$Link / NHL Link
Vincent MarleauMilwaukee Admirals (NAS)C/RW231999-07-05Yes190 Lbs6 ft2NoNoNo3Pro & Farm750,000$0$0$No750,000$750,000$Link / NHL Link
Will ButcherMilwaukee Admirals (NAS)D281995-01-06No190 Lbs5 ft10NoNoNo2Pro & Farm875,000$0$0$No875,000$Link / NHL Link
William LagessonMilwaukee Admirals (NAS)D271996-02-22No207 Lbs6 ft2NoNoNo3Pro & Farm825,000$0$0$No825,000$825,000$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3227.34195 Lbs6 ft11.75895,443$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ryan DzingelBrian BoyleSeth Griffith35014
2Adam CracknellPatrick BrownMiles Wood30014
3Maxim MaminSheldon DriesPhilip Tomasino20113
4Ridly GreigKyle TurrisTaro Hirose15212
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dylan SambergJordan Gross50014
2William LagessonWill Butcher30122
3Jacob LarssonCale Fleury20131
4Dylan SambergWill Butcher0122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Ryan DzingelBrian BoyleSeth Griffith65005
2Miles WoodPhilip TomasinoMaxim Mamin35005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Dylan SambergWill Butcher65014
2William LagessonJacob Larsson35005
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Brian BoylePatrick Brown60131
2Adam CracknellMiles Wood40221
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Dylan SambergWilliam Lagesson60131
2Cale FleuryJacob Larsson40230
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Brian Boyle59230Dylan SambergWill Butcher55131
2Patrick Brown41140William LagessonJacob Larsson45140
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Brian BoyleMiles Wood60113
2Philip TomasinoSeth Griffith40212
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dylan SambergWill Butcher60122
2William LagessonCale Fleury40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Seth GriffithBrian BoyleRyan DzingelDylan SambergWill Butcher
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Sheldon DriesBrian BoylePatrick BrownDylan SambergWilliam Lagesson
Extra Forwards
Normal PowerPlayPenalty Kill
Brian Boyle, Seth Griffith, Philip TomasinoMaxim Mamin, Seth GriffithBrian Boyle
Extra Defensemen
Normal PowerPlayPenalty Kill
Jacob Larsson, Jordan Gross, Cale FleuryJacob LarssonJacob Larsson, Jordan Gross
Penalty Shots
Seth Griffith, Brian Boyle, Patrick Brown, Philip Tomasino, Maxim Mamin
Goalie
#1 : Malcolm Subban, #2 : Connor Ingram
Custom OT Lines Forwards
Seth Griffith, Brian Boyle, Ryan Dzingel, Philip Tomasino, Maxim Mamin, Miles Wood, Miles Wood, Sheldon Dries, Patrick Brown, Adam Cracknell, Taro Hirose
Custom OT Lines Defensemen
Dylan Samberg, Will Butcher, William Lagesson, Jacob Larsson, Cale Fleury


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Abbotsford Canucks2100010010641000010034-11100000072530.75010192900909161127077275772349571918424125.00%9277.78%01106241645.78%1098226948.39%599115252.00%178212181628546965494
2Bakersfield Condors2010001067-11010000024-21000001043120.50068140090916112607727577234967171444500.00%7357.14%01106241645.78%1098226948.39%599115252.00%178212181628546965494
3Belleville Senators220000001358110000007251100000063341.00013233600909161127477275772349531116376233.33%70100.00%11106241645.78%1098226948.39%599115252.00%178212181628546965494
4Bridgeport Islanders22000000927110000004131100000051441.00091625009091611259772757723493311103313215.38%50100.00%01106241645.78%1098226948.39%599115252.00%178212181628546965494
5Calgary Wranglers2100010012931000010067-11100000062430.750121931009091611270772757723495720124711654.55%6183.33%01106241645.78%1098226948.39%599115252.00%178212181628546965494
6Charlotte Checkers2110000045-1110000003211010000013-220.500471110909161123877275772349581014428112.50%6183.33%01106241645.78%1098226948.39%599115252.00%178212181628546965494
7Chicago Wolves3120000069-3211000004401010000025-320.33361117019091611210177275772349602212611218.33%6183.33%01106241645.78%1098226948.39%599115252.00%178212181628546965494
8Cleveland Monsters200000117701000000134-11000001043130.7507111800909161127377275772349661612501119.09%60100.00%01106241645.78%1098226948.39%599115252.00%178212181628546965494
9Coachella Valley Firebirds330000001248220000009271100000032161.000122436009091611296772757723498521256411436.36%10190.00%01106241645.78%1098226948.39%599115252.00%178212181628546965494
10Colorado Eagles2020000026-41010000013-21010000013-200.000246009091611266772757723496116165113215.38%8275.00%01106241645.78%1098226948.39%599115252.00%178212181628546965494
11Grand Rapids Griffins411001011213-131100100101001000000123-140.5001221330090916112138772757723491192341891317.69%15473.33%01106241645.78%1098226948.39%599115252.00%178212181628546965494
12Hartford Wolf Pack21001000817110000006061000100021141.0008132101909161126677275772349491114456116.67%7185.71%01106241645.78%1098226948.39%599115252.00%178212181628546965494
13Henderson Silver Knights2020000058-31010000023-11010000035-200.000581300909161128077275772349621244113323.08%20100.00%01106241645.78%1098226948.39%599115252.00%178212181628546965494
14Hershey Bears2110000034-11010000014-31100000020220.50035801909161126877275772349441710561119.09%5180.00%01106241645.78%1098226948.39%599115252.00%178212181628546965494
15Iowa Wild3210000013941010000014-322000000125740.667132336009091611261772757723491163026659333.33%12375.00%01106241645.78%1098226948.39%599115252.00%178212181628546965494
16Laval Rocket20101000330100010002111010000012-120.50036900909161125577275772349622222476116.67%10190.00%01106241645.78%1098226948.39%599115252.00%178212181628546965494
17Lehigh Valley Phantoms2010100089-1100010005411010000035-220.5008132110909161125477275772349732418343133.33%8275.00%01106241645.78%1098226948.39%599115252.00%178212181628546965494
18Manitoba Moose330000001156110000003032200000085361.000112233019091611283772757723497724186918422.22%90100.00%01106241645.78%1098226948.39%599115252.00%178212181628546965494
19Ontario Reign210001001174110000006151000010056-130.7501121320090916112687727577234943111441900.00%7271.43%01106241645.78%1098226948.39%599115252.00%178212181628546965494
20Providence Bruins21000100853110000005141000010034-130.750813210090916112757727577234936875013323.08%110.00%01106241645.78%1098226948.39%599115252.00%178212181628546965494
21Rochester Americans21000100880110000005411000010034-130.7508152300909161126677275772349539183811218.18%9188.89%01106241645.78%1098226948.39%599115252.00%178212181628546965494
22Rockford IceHogs3110010067-1110000002112010010046-230.5006111700909161127277275772349792439661317.69%14285.71%01106241645.78%1098226948.39%599115252.00%178212181628546965494
23San Diego Gulls21000010532110000002111000001032141.000561100909161126377275772349661723434125.00%9277.78%01106241645.78%1098226948.39%599115252.00%178212181628546965494
24San Jose Barracuda211000008621010000034-11100000052320.500814220090916112547727577234964141445600.00%7271.43%01106241645.78%1098226948.39%599115252.00%178212181628546965494
25Springfield Thunderbirds21001000743100010003211100000042241.0007142100909161126777275772349492014494250.00%6183.33%01106241645.78%1098226948.39%599115252.00%178212181628546965494
26Syracuse Crunch220000001183110000005411100000064241.00011162700909161126477275772349581726388112.50%12558.33%21106241645.78%1098226948.39%599115252.00%178212181628546965494
27Texas Stars512000021015-52100000165130200001410-640.400102030009091611215277275772349149423011119210.53%14192.86%01106241645.78%1098226948.39%599115252.00%178212181628546965494
28Toronto Marlies22000000734110000003211100000041341.00071320009091611271772757723494723144917423.53%70100.00%01106241645.78%1098226948.39%599115252.00%178212181628546965494
29Tucson Roadrunners220000001064110000006331100000043141.000101727009091611272772757723494611124410330.00%60100.00%01106241645.78%1098226948.39%599115252.00%178212181628546965494
30Utica Comets21100000550110000003211010000023-120.5005712009091611276772757723493313144410220.00%7271.43%01106241645.78%1098226948.39%599115252.00%178212181628546965494
31Wilkes-Barre/Scranton Penguins210010001082100010005411100000054141.00010192900909161126777275772349441518455240.00%9277.78%01106241645.78%1098226948.39%599115252.00%178212181628546965494
Total7235180573425019753361980430212693333616100143212410420970.6742504396892490916112227977275772349196655054515803025819.21%2464482.11%31106241645.78%1098226948.39%599115252.00%178212181628546965494
_Since Last GM Reset7235180573425019753361980430212693333616100143212410420970.6742504396892490916112227977275772349196655054515803025819.21%2464482.11%31106241645.78%1098226948.39%599115252.00%178212181628546965494
_Vs Conference40191100523137114232010600301655312209500222726111500.625137244381029091611212407727577234911473073028721573019.11%1332481.95%01106241645.78%1098226948.39%599115252.00%178212181628546965494
_Vs Division201270020359527873001012218412540010237343290.72559111170019091611257377275772349577167155455861719.77%69986.96%01106241645.78%1098226948.39%599115252.00%178212181628546965494

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
7297W125043968922791966550545158024
All Games
GPWLOTWOTL SOWSOLGFGA
7235185734250197
Home Games
GPWLOTWOTL SOWSOLGFGA
36198430212693
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3616101432124104
Last 10 Games
WLOTWOTL SOWSOL
720100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
3025819.21%2464482.11%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
7727577234990916112
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1106241645.78%1098226948.39%599115252.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
178212181628546965494


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2022-10-128Milwaukee Admirals2Texas Stars5ALBoxScore
3 - 2022-10-1324Milwaukee Admirals1Rockford IceHogs2ALXBoxScore
4 - 2022-10-1432Grand Rapids Griffins4Milwaukee Admirals3BLBoxScore
8 - 2022-10-1857Milwaukee Admirals2Texas Stars3ALXXBoxScore
9 - 2022-10-1963Grand Rapids Griffins3Milwaukee Admirals2BLXBoxScore
12 - 2022-10-2284Texas Stars1Milwaukee Admirals3BWBoxScore
14 - 2022-10-24101Milwaukee Admirals7Iowa Wild3AWBoxScore
15 - 2022-10-25114Coachella Valley Firebirds1Milwaukee Admirals6BWBoxScore
17 - 2022-10-27126Milwaukee Admirals4Manitoba Moose2AWBoxScore
19 - 2022-10-29148Chicago Wolves0Milwaukee Admirals3BWBoxScore
21 - 2022-10-31164Milwaukee Admirals2Chicago Wolves5ALBoxScore
23 - 2022-11-02178Milwaukee Admirals1Charlotte Checkers3ALBoxScore
24 - 2022-11-03190Rockford IceHogs1Milwaukee Admirals2BWBoxScore
27 - 2022-11-06211Milwaukee Admirals0Texas Stars2ALBoxScore
29 - 2022-11-08223Wilkes-Barre/Scranton Penguins4Milwaukee Admirals5BWXBoxScore
31 - 2022-11-10244Milwaukee Admirals6Calgary Wranglers2AWBoxScore
33 - 2022-11-12255Grand Rapids Griffins3Milwaukee Admirals5BWBoxScore
35 - 2022-11-14275Milwaukee Admirals4Springfield Thunderbirds2AWBoxScore
36 - 2022-11-15286Iowa Wild4Milwaukee Admirals1BLBoxScore
39 - 2022-11-18305Milwaukee Admirals5Ontario Reign6ALXBoxScore
40 - 2022-11-19318Tucson Roadrunners3Milwaukee Admirals6BWBoxScore
42 - 2022-11-21337Springfield Thunderbirds2Milwaukee Admirals3BWXBoxScore
45 - 2022-11-24356Milwaukee Admirals4Bakersfield Condors3AWXXBoxScore
47 - 2022-11-26371Texas Stars4Milwaukee Admirals3BLXXBoxScore
48 - 2022-11-27385Milwaukee Admirals1Laval Rocket2ALBoxScore
51 - 2022-11-30403San Diego Gulls1Milwaukee Admirals2BWBoxScore
53 - 2022-12-02423Milwaukee Admirals5Iowa Wild2AWBoxScore
55 - 2022-12-04432Hershey Bears4Milwaukee Admirals1BLBoxScore
58 - 2022-12-07458Milwaukee Admirals6Belleville Senators3AWBoxScore
60 - 2022-12-09468Milwaukee Admirals3Rochester Americans4ALXBoxScore
61 - 2022-12-10478Laval Rocket1Milwaukee Admirals2BWXBoxScore
64 - 2022-12-13496Milwaukee Admirals2Grand Rapids Griffins3ALXXBoxScore
65 - 2022-12-14508Colorado Eagles3Milwaukee Admirals1BLBoxScore
67 - 2022-12-16522Milwaukee Admirals2Hartford Wolf Pack1AWXBoxScore
69 - 2022-12-18538Providence Bruins1Milwaukee Admirals5BWBoxScore
70 - 2022-12-19551Milwaukee Admirals3Henderson Silver Knights5ALBoxScore
72 - 2022-12-21567Milwaukee Admirals4Toronto Marlies1AWBoxScore
73 - 2022-12-22575Rochester Americans4Milwaukee Admirals5BWBoxScore
75 - 2022-12-24593Milwaukee Admirals1Colorado Eagles3ALBoxScore
77 - 2022-12-26606Ontario Reign1Milwaukee Admirals6BWBoxScore
80 - 2022-12-29631Calgary Wranglers7Milwaukee Admirals6BLXBoxScore
82 - 2022-12-31646Milwaukee Admirals4Cleveland Monsters3AWXXBoxScore
84 - 2023-01-02663Chicago Wolves4Milwaukee Admirals1BLBoxScore
85 - 2023-01-03675Milwaukee Admirals4Tucson Roadrunners3AWBoxScore
88 - 2023-01-06695Abbotsford Canucks4Milwaukee Admirals3BLXBoxScore
90 - 2023-01-08711Milwaukee Admirals5San Jose Barracuda2AWBoxScore
91 - 2023-01-09720Milwaukee Admirals5Bridgeport Islanders1AWBoxScore
93 - 2023-01-11735Henderson Silver Knights3Milwaukee Admirals2BLBoxScore
96 - 2023-01-14757Milwaukee Admirals4Manitoba Moose3AWBoxScore
97 - 2023-01-15766Hartford Wolf Pack0Milwaukee Admirals6BWBoxScore
100 - 2023-01-18794Bridgeport Islanders1Milwaukee Admirals4BWBoxScore
102 - 2023-01-20808Milwaukee Admirals3Coachella Valley Firebirds2AWBoxScore
104 - 2023-01-22823Milwaukee Admirals5Wilkes-Barre/Scranton Penguins4AWBoxScore
105 - 2023-01-23830Utica Comets2Milwaukee Admirals3BWBoxScore
107 - 2023-01-25852Milwaukee Admirals6Syracuse Crunch4AWBoxScore
108 - 2023-01-26861Milwaukee Admirals2Hershey Bears0AWBoxScore
109 - 2023-01-27865Bakersfield Condors4Milwaukee Admirals2BLBoxScore
112 - 2023-01-30893Toronto Marlies2Milwaukee Admirals3BWBoxScore
114 - 2023-02-01909Milwaukee Admirals2Utica Comets3ALBoxScore
116 - 2023-02-03925Coachella Valley Firebirds1Milwaukee Admirals3BWBoxScore
120 - 2023-02-07953Cleveland Monsters4Milwaukee Admirals3BLXXBoxScore
123 - 2023-02-10976Milwaukee Admirals3Lehigh Valley Phantoms5ALBoxScore
124 - 2023-02-11984Syracuse Crunch4Milwaukee Admirals5BWBoxScore
127 - 2023-02-141008Manitoba Moose0Milwaukee Admirals3BWBoxScore
129 - 2023-02-161021Milwaukee Admirals3Providence Bruins4ALXBoxScore
131 - 2023-02-181039Milwaukee Admirals3San Diego Gulls2AWXXBoxScore
132 - 2023-02-191048Milwaukee Admirals3Rockford IceHogs4ALBoxScore
133 - 2023-02-201056Lehigh Valley Phantoms4Milwaukee Admirals5BWXBoxScore
135 - 2023-02-221071Milwaukee Admirals7Abbotsford Canucks2AWBoxScore
136 - 2023-02-231084Belleville Senators2Milwaukee Admirals7BWBoxScore
140 - 2023-02-271114San Jose Barracuda4Milwaukee Admirals3BLBoxScore
146 - 2023-03-051152Charlotte Checkers2Milwaukee Admirals3BWBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance68,25833,831
Attendance PCT94.80%93.98%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
0 2836 - 94.53% 80,458$2,896,495$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
3,645,300$ 2,620,416$ 2,620,416$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 2,445,324$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 25,989$ 0$




Milwaukee Admirals Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
1Patrick Brown14243771204813822536531913.48%26246317.3514173168033810257.7200.9706
2Philip Tomasino144476110886110724634513.62%12238716.5814264089101114545.0310.9035
3Brian Boyle72345084274910119630211.26%22153521.331011216211278549.6421.0937
4Ryan Dzingel7029376612187617628310.25%20145820.83610167301178449.0900.9105
5Andrew Agozzino6923416415658913219911.56%14145021.02522276211253055.0300.8801

Milwaukee Admirals Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
1Malcolm Subban1176632140.8982.65678010729929200420.57135
2Pheonix Copley1810320.9022.5696301414190100.71414
3Jean-Francois Berube167610.8722.6588200393050100.00%0
4Connor Ingram145510.8822.9060100292460010.00%0
5Connor LaCouvee41200.8003.48155009450000.00%0

Milwaukee Admirals Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
20217232250534321719918361810013221211031836141504021969608821738460114727264161832594614601481756500118814324626914.94%4806586.46%41154224751.36%1141218952.12%589107654.74%175211721681566936474
20227235180573425019753361980430212693333616100143212410420972504396892490916112227977275772349196655054515803025819.21%2464482.11%31106241645.78%1098226948.39%599115252.00%178212181628546965494
Total Regular Season14467430101077467396717237180562424719651723025054532202002018546782312903816216312528411113661371132497372210501733301276412716.62%72610984.99%72260466348.47%2239445850.22%1188222853.32%35352390331011131902969
Playoff
202123167000008155261210200000432617116500000382993281147228022821302695201228220467271893454941422719.01%1501987.33%045285552.87%43084151.13%18436650.27%609412558184306157
Total Playoff23167000008155261210200000432617116500000382993281147228022821302695201228220467271893454941422719.01%1501987.33%045285552.87%43084151.13%18436650.27%609412558184306157

Milwaukee Admirals Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS
123619255224255688.82%243819.0528102400000052.3001.1400
2239132271631386214.52%438216.625382300003052.8501.1500
32310102082637298012.50%642118.333692500003057.7800.9500
42341620102833192516.00%2055224.01167120000000.00%00.7200
523513187283643539.43%3661026.52336350000110.00%00.5900

Milwaukee Admirals Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA
12113520.9262.20131202486530300.00%0
233000.9052.64159007740000.00%0